

Empirically adjusted and consistent set of EHT valence orbital parameters for all elements of the periodic table

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 Modelling Simul. Mater. Sci. Eng. 12 21 (http://iopscience.iop.org/0965-0393/12/1/003) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 153.19.38.17 The article was downloaded on 16/09/2010 at 13:46

Please note that terms and conditions apply.

Modelling Simul. Mater. Sci. Eng. 12 (2004) 21-32

PII: S0965-0393(04)67936-8

Empirically adjusted and consistent set of EHT valence orbital parameters for all elements of the periodic table

Aleksander Herman

Department of Chemistry, Technical University of Gdańsk, Gabriela Narutowicza 11/12, 80-952 Gdańsk, Poland

E-mail: holo@altis.chem.pg.gda.pl

Received 18 May 2003, in final form 11 August 2003 Published 3 November 2003 Online at stacks.iop.org/MSMSE/12/21 (DOI: 10.1088/0965-0393/12/1/003)

Abstract

The Hartree–Fock–Slater model of atoms has been modified by using individual values of the exchange parameter, α_{ex} , for each atom. Each value of α_{ex} was adjusted to reproduce the empirical value of the first ionization energy of the atom considered. The expectation values, energies and radial functions for all elements of the periodic table have been evaluated on the basis of the Hartree–Fock–Slater model and individual exchange parameters. A consistent set of Slater type orbital single ζ valence atomic orbital exponents and energies for all elements of the periodic table, suitable for orbital interaction analysis, is presented. These exponents were calculated by fitting the $\langle r \rangle_{\text{STO}}$ moments to numerical empirically adjusted $\langle r \rangle_{\text{HFS}}$ results. Qualitatively, the new parameters compare well with Fitzpatrick and Murphy exponents and Mann numerical Hartree–Fock $\langle r \rangle_{\text{HF}}$ moments and energy values but contain some influence of correlation and relativistic phenomena.

1. Introduction

In principle, we can perform pseudopotential DFT molecular orbital calculations on systems of almost any complexity. It is, however, often extremely profitable in terms of understanding the orbital structure to relate the level arrangement in a complex system to that of a simpler one. This kind of understanding can be reached through the orbital interaction approach [1, 2]. It is generally acknowledged that orbital interaction calculations are broadly divided into two categories. The first category focuses on providing a conceptual framework for considering the organization of experimental knowledge (understanding) [1, 2]. The second category generally relates to modelling a particular experimental property of a large system. An excellent new example of such a philosophy can be found in [3]. Although both categories are based on the molecular orbital concept, and an effective one-electron Hamiltonian, H^{eff} , they are notably

different in terms of semi-empirical definition of matrix representation, $H_{\mu\nu} = \langle \chi_{\mu} | H^{\text{eff}} | \chi_{\nu} \rangle$, on an atomic orbital basis. The choice of approach is generally a question of style and the interpretation desired.

In the first approach the diagonal element, $H_{\mu\mu}$, is estimated by the valence state ionization potential (VSIP) of the atomic orbital χ_{μ} and the off-diagonal element $H_{\mu\nu}$ is approximated as a function of the overlap integral $S_{\mu\nu} = \langle \chi_{\mu} | \chi_{\nu} \rangle$. In this approach, one should pay attention to the parameters of atomic orbitals used to construct the matrix elements since only functional dependence between $H_{\mu\nu}$ and $S_{\mu\nu}$ is the subject of a semi-empirical approximation. The firm foundation of such an orbital interaction philosophy was given by Hoffmann [4] in 1963 under the name extended Hückel (EH) theory. That approach used realistic atomic data (orbital energies and exponents) in orbital interaction calculations. It means that the method does not give all results accurately, but a universal parameter set can be used without suspicion that it is wrong for a particular purpose [5].

In constructing the matrix representation in the second approach, the problem of empirical parameters is treated more formally, sometimes avoiding any reference to their physical meaning. We suppose that some or all quantities such as $H_{\mu\mu}$, $H_{\mu\nu}$ and/or $S_{\mu\nu}$, that enter the EH method are assumed empirical parameters. Then their optimal values can be determined from the condition that the calculated molecular properties agree either with the corresponding experimental data or with the results of accurate calculations. Naturally, to ensure the generality of such parameters, we should select them for a series of distinct systems and for various physical properties. In the second approach, such a procedure has not so far been consistently employed on a large scale [6]. For that reason, the method is sometimes called the 'separated parameters for separate problems approach'.

The primary goal of this article is to generate an empirically adjusted and consistent set of valence orbital parameters for all elements of the periodic table, in the spirit of the first approach. One-electron radial wavefunctions and orbital energies can be obtained numerically by solution of the Hartree–Fock (HF) equations [7, 8]. However, for approximate comparative orbital interactions, calculations (the EHT formalism) where high accuracy is not required, simpler expressions for the radial wavefunctions are needed. Slater [9], long ago, recognized this need and proposed the use of an exponential function to describe the radial part of each atomic orbital (equation (1)).

$$R(r) = Nr^{n^*-1} \exp(-\zeta r), \qquad \zeta = \frac{Z-s}{n^*}.$$
(1)

Values for n^* and rules for calculating the screening constant, *s*, were given. These functions (Slater orbitals) can be calculated for all elements of the periodic table but give poor approximations for $n^* = 3$ and upwards [10]. Subsequent workers retained the form of equation (1), sometimes as a linear combination, and used a variety of methods to obtain the optimum orbital exponent, ζ [11]. Such functions become known as Slater type orbitals (STOs). A limiting factor of existing parameter sets in orbital interaction analysis remains, in that they are not consistent and not accurate enough even in comparison with known experimental atomic properties. To overcome this, we suggest the use of the empirically adjusted Hartree–Fock–Slater (HFS) model of the atom [12] as the source of accurate data for estimation of one-electron energies and exponents. The relationship between the HF and the HFS description of atoms is well described in Herman and Skillman's original book [13]. The HFS model of the atom has been used for orbital exponent evaluations by Fitzpatrick and Murphy [14].

2. Evaluation of individual values of statistical exchange parameters α_{ex} for atoms

The HFS model of the atom entails self-consistent solution of (equations (2)–(5))

$$\left[\frac{1}{2}\nabla_{l}^{2} + V_{\text{eff}}\right]\phi_{i}(1) = \varepsilon_{i}\phi_{i}(1), \qquad (2)$$

where

$$V_{\rm eff} = -\frac{Z}{r_1} + \int \frac{\rho(2)}{r_{12}} \,\mathrm{d}\tau_2 - 3\alpha_{\rm ex} \left(\frac{3}{8\pi}\right)^{1/3} \rho^{1/3} \tag{3}$$

and

$$\rho(1) = \sum_{i} n_{i} |\phi_{i}(1)|^{2}.$$
(4)

The ground-state energy is then determined from the equation

$$E[\rho] = \sum_{i} n_i \varepsilon_i - J[\rho] + K_{\text{ex}}[\rho].$$
⁽⁵⁾

Our approach differs from the Fitzpatrick method in that the optimal exchange parameter, $\alpha_{\rm ex}$, was estimated for each atom in the periodic table. Originally, this idea was introduced by Slater and Johnson [15]. In section 4 of their paper, they have suggested a criterion for determining a value of the parameter α_{ex} . The suggested scheme was to determine the parameter α_{ex} in an atomic calculation and use the same values in molecular or solid-state calculations. Next Schwarz examined two criteria for determining the exchange parameter α_{ex} [16, 17]. These criteria are (i) adjustment of the statistical total energy to the HF total energy, leading to $\alpha_{\rm HF}$, and (ii) satisfaction of the virial theorem, leading to $\alpha_{\rm vt}$. Numerical calculations of Schwarz show that individual $\alpha_{\rm HF}$ and $\alpha_{\rm vt}$ values are almost the same [16, 17] and differ by not more than 0.001. But the HFS model of the atom used with α_{ex} values obtained according to procedure (i) or (ii) has the same disadvantage as the pure HF model [7, 8], correlation and relativistic phenomena are not included in such a model. It is consistent but not empirically adjusted. For empirical adjustment, we need an atomic property that is known for all atoms in the periodic table. According to the NIST Standard Reference Data Program [18], only the first ionization energy meets this constraint, except for astatine. In this work, for empirical adjustment, the individual value of the exchange parameter α_{ex} was fixed at a value that give an exact reproduction of the experimental first ionization energy of the atom considered according to Koopman's theorem. In that way, some correlation (very low individual α_{ex} value of the exchange parameter for Li) and relativistic phenomena (very high individual α_{ex} values for Pt, Au and Hg) are partially included [12] as shown in table 1.

In the following, we shall only give the relevant computational details for this particular case. The HFS calculations for atomic systems have been performed using the free-electron density approximation (FDA) program [19]. For comparison of the numerical results, the QCMP102 [20] package has been used. For evaluation of the individual exchange parameters of the elements, accurate ionization energy data have been used [18]. The original free electron-based universal α_{ex} parameter, introduced by Slater, equals $\frac{2}{3}$ and yields acceptable results, but sometimes other values are used [13, 14]. We have therefore modified the α_{ex} parameter individually for each atom to achieve equality of the calculated and experimentally observed first ionization energy. Results from the calculations for the whole periodic table are shown in table 1. The mean value of α_{ex} is 0.756, with a standard deviation 0.081, the lowest observed value, of lithium, is 0.540 and the highest, of gold, is 0.956.

Our goal is the construction of an empirically adjusted and consistent set of valence orbital parameters for all elements of the periodic table in the spirit of the first approach above. It may

	_																
1																	2
Н																	He
0.667*																	0.687
-2.000		-													,		-1.937
3	4											5	6	7	8	9	10
Li	Be											B	C	Ν	0	F	Ne
0.540	0.757											0.784	0.785	0.791	0.602	0.647	0.683
-1.924	-1.915											-1.924	-1.932	-1.938	-1.958	-1.957	-1.956
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
0.627	0.732											0.779	0.781	0.785	0.635	0.665	0.689
-1.962	-1.958		1	1	1			1	1	1		-1.959	-1.961	-1.963	-1.972	-1.971	-1.972
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.697	0.739	0.736	0.718	0.657	0.828	0.668	0.691	0.654	0.585	0.775	0.736	0.777	0.777	0.773	0.644	0.665	0.684
-1.972	-1.972	-1.973	-1.975	-1.978	-1.972	-1.978	-1.978	-1.980	-1.982	-1.977	-1.979	-1.978	-1.978	-1.979	-1.983	-1.983	-1.983
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
0.725	0.742	0.735	0.731	0.869	0.874	0.693	0.845	0.832	0.650	0.804	0.763	0.780	0.773	0.744	0.660	0.660	0.673
-1.982	-1.982	-1.983	-1.983	-1.980	-1.980	-1.987	-1.982	-1.982	-1.986	-1.983	-1.984	-1.984	-1.985	-1.985	-1.987	-1.988	-1.987
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0.764	0.760	0.745	0.738	0.782	0.780	0.746	0.783	0.812	0.948	0.956	0.884	0.826	0.797	0.657	0.645	0.667*	0.631
-1.986	-1.986	-1.987	-1.989	-1.988	-1.988	-1.989	-1.988	-1.988	-1.986	-1.986	-1.987	-1.988	-1.989	-1.991	-1.991	-1.991	-1.992
8/	88	89	104														
Fr	Ra	Ac	RI														
0.854	0.808	0.721	0.690														
-1.989	-1.989	-1.991	-1.992														
			r	1	1			1				1					-
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			0 700	0 7 40	0 7 4 0	0 7 4 0	0 7 40	0.74	0 5 6 0	0 770	0 701	0.707	0.700	0 704	0 707	0 6 4 0	1

Table 1. Empirically adjusted exchange parameters α (upper values), and corresponding virial ratio (lower values).

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
0.729	0.769	0.768	0.768	0.769	0.764	0.763	0.778	0.781	0.786	0.790	0.794	0.797	0.640
-1.987	-1.987	-1.987	-1.987	-1.987	-1.987	-1.987	-1.987	-1.987	-1.987	-1.987	-1.987	-1.987	-1.990
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
0.827	0.808	0.840	0.843	0.860	0.846	0.786	0.864	0.869	0.881	0.886	0.891	0.895	0.847
-1.989	-1.990	-1.989	-1.989	-1.989	-1.989	-1.990	-1.989	-1.989	-1.989	-1.989	-1.989	-1.989	-1.990

* Value of free-electron gas scale factor.

A Herman

24

Figure 1. Correlation of modified HFS total binding energy with HF binding energy for all elements of the periodic table.

Figure 2. Correlation of modified HFS $\langle r \rangle$ expectation values with HF values for all elements of the periodic table.

be of particular importance to examine the computed properties of atoms in comparison with accurate HF results [7, 8]. The questions are how our total binding energy values compare with results of accurate HF calculations and what happen with radial expectation values when we introduce an individual set of α_{ex} parameters. Figure 1 shows the correlation between minus total atom energies and figure 2 the correlation between the $\langle r \rangle$ expectation values. The total

binding energy values calculated by our modified method are slightly larger (atoms are more stable) than HF values, and the modified HFS values are $\sim 0.3\%$ bigger than the HF values. The $\langle r \rangle$ expectation values calculated by our method are generally equal to or lower than HF values by about 6.2% (atoms are more compact). Both effects can be explained as being due to partial inclusion of electron correlation and relativistic phenomena by individual adjustment of α_{ex} . As seen in table 1, computed values of the virial ratio do not exactly equal -2. The difference shows a kind of price that we must pay for empirical parametrization of the HFS model. The results of basis set-free comparisons with HF results shows that our modified HFS model of atomic structure includes some correlation and relativistic phenomena. The modified HFS model can be treated as a source of atomic data for construction of an empirically adjusted and consistent set of valence orbital parameters for all elements of the periodic table.

3. Evaluation of empirically adjusted and consistent valence orbital parameter set for orbital interaction calculations

Routine applications of orbital interactions normally use perturbation molecular orbital theory, usually within the EHT formalism. These do not require extensive or highly accurate atomic wavefunctions. However, a consistent set within and between members of a series is most desirable. Typically, only a single exponent for the valence orbital is required, and each radial wavefunction can be represented by a single normalized STO (equation (6)).

$$R_k(r) = (2\zeta)^{k+1/2} ((2k)!)^{-1/2} r^{k-1} \exp(-\zeta r).$$
(6)

Each numerical radial function obtained by HF or HFS theory displays oscillatory behaviour. For a given *n* and *l* the function has n - l - 1 radial nodes, whereas a single STO has the property of being always positive. This difficulty can be overcome, and the single STO representation retained, by considering the equality of the radial expectation values for each atomic orbital (equation (7)).

$$\langle r \rangle_{\rm STO} = \langle r \rangle_{\rm HFS}.$$
 (7)

Although the analytic STO cannot represent this inner behaviour adequately, the above approximation was considered desirable since the inner part of the radial function has an unimportant role in determining orbital interaction energy. Consequently, a basis set with an equal quality (single STO approximation) is more consistent. Optimal STO exponents ζ were determined using the iteration technique to solve equality (7). The *Mathematica* (8) package was used to implement this procedure.

In all cases, the electronic configurations of the elements were those given by the NIST standard reference data program [18]. For some elements, virtual unoccupied orbitals are of interest [21]. Whenever such a situation occurred, exponents and orbital energies for both ground and excited states were computed.

Valence orbital energy values are given for the whole periodic table in table 2 and corresponding orbital exponents in table 3.

Qualitatively, the new parameters compare well with Fitzpatrick and Murphy's exponents [14] and Mann's calculated numerical HF $\langle r \rangle_{\rm HF}$ moments and energy values [7,8]. The differences are due to correlation and relativistic phenomena included by empirical estimation of the exchange parameters $\alpha_{\rm ex}$ for each atom under consideration. According to the HFS model parametrization scheme, the energy of each HOMO orbital matches exactly the observed ionization energy of the atom considered. These new energy and exponent values are particularly useful for orbital interaction considerations according to the 'EH theory' idea introduced by Hoffmann [4]. To date, no complete consistent and empirically adjusted set is

1 H 1s -13.598																	2 He 1s -24.587
3 Li 2s -5.392 2p -3.540	4 Be 2s -9.323 2p -5.600											5 B 2s -14.688 2p -8.298	6 C 2s -20.337 2p -11.260	7 N 2s -26.685 2p-14.534	8 O 2s -28.541 2p -13.618	9 F 2s -36.369 2p -17.423	10 Ne 2s -44.924 2p -21.565
11 Na 3s -5.139 3p -3.091	12 Mg 3s -7.646 3p -4.280											13 Al 3s -11.839 3p -5.986	14 Si 3s -17.738 3p -8.152	15 P 3s -19.803 3p -10.487	16 S 3s -20.941 3p -10.360	17 Cl 3s -25.452 3p -12.968	18 Ar 3s -30.168 3p -15.760
19 K 4s -4.341 4p -2.786	20 Ca 4s -6.113 4p -3.744	21 Sc 4s -6.561 4p -3.913 3d -9.450	22 Ti 4s -6.828 4p -3.973 3d -10.495 -	23 V 4s -6.746 4p -3.842 3d -10.370	24 Cr 4s -6.766 4p -3.739 3d -10.642	25 Mn 4s -7.434 4p -4.060 3d -13.017	26 Fe 4s -7.902 4p -4.228 3d -14.805	27 Co 4s -7.881 4p -4.141 3d -14.821	28 Ni 4s -7.640 4p -3.956 3d -13.820	29 Cu 4s -7.726 4p -3.913 3d -14.100	30 Zn 4s -9.394 4p -4.664	31 Ga 4s -13.234 4p -5.999 -	32 Ge 4s -16.579 4p -7.899	33 As 4s -19.825 4p -9.789	34 Se 4s -20.658 4p -9.752	35 Br 4s -24.165 4p -11.814	36 Kr 4s -27.781 4p -14.000
37 Rb 5s -4.177 5p -2.664 -	38 Sr 5s -5.695 5p -3.703	39 Y 5s -6.217 5p -3.703 4d -7.173	40 Zr 5s -6.634 5p -3.866 4d -8.740 -	41 Nb 5s -6.759 5p -3.823 4d -10.261	42 Mo 5s -7.092 5p -3.951 4d -11.921	43 Tc 5s -7.28 5p -4.04 4d -12.59	44 Ru 5s -7.360 5p -3.983 4d -14.214	45 Rh 5s -7.459 5p -3.989 4d -15.333	46 Pd 5s -6.441 5p -3.352 4d -8.337	47 Ag 5s -7.576 5p -3.967 4d -17.401	48 Cd 5s -8.994 5p -4.686 -	49 In 5s -11.953 5p -5.786 -	50 Sn 5s -14.519 5p -7.344	51 Sb 5s -16.642 5p -8.608	52 Te 5s -17.703 5p -9.010	53 I 5s -20.078 5p -10.451	54 Xe 5s -22.737 5p -12.130 -
55 Cs 6s -3.894 6p -2.544 -	56 Ba 6s -5.212 6p -3.333	57 La 6s -5.577 6p -3.480 5d -7.826 4f -10.702	72 Hf 6s -6.825 6p -3.905 5d -8.419 -	73 Ta 6s -7.550 6p -4.264 5d -10.786	74 W 6s -7.864 6p -4.375 5d -12.293	75 Re 6s -7.833 6p -4.288 5d -13.053	76 Os 6s -8.438 6p -4.577 5d -15.450	77 Ir 6s -8.967 6p -4.830 5d -17.779	78 Pt 6s -8.959 6p -4.694 5d -19.695	79 Au 6s -9.225 6p -4.786 5d -21.567	80 Hg 6s -10.437 6p -5.521 -	81 Tl 6s -12.402 6p -6.108	82 Pb 6s -14.476 6p -7.417 -	83 Bi 6s -14.658 6p -7.286 -	84 Po 6s -16.574 6p -8.417 -	85 At 6s -19.9 6p -10.7	86 Rn 6s -20.454 6p -10.748 -
87 Fr 7s -4.073 7p -2.637 -	88 Ra 7s -5.278 7p -3.412	89 Ac 7s -5.17 7p -2.25 6d -6.97 5f -7.93	104 Rf 7s -6.0 7p -3.5 6d -8.1														
			58 Ce 6s -5.539 6p -3.437 5d -7.594 4f -20.775	59 Pr 6s -5.473 6p -3.450 5d -4.944 4f -16.405	60 Nd 6s -5.525 6p -3.467 5d -4.879 4f -17.232	61 Pm 6s -5.582 6p -3.488 5d -4.813 4f -18.010	62 Sm 6s -5.644 6p -3.510 5d -4.754 4f -18.756	63 Eu 6s -5.670 6p -3.507 5d -4.615 4f -19.164	64 Gd 6s -6.150 6p -3.717 5d -7.915 4f -27.588	65 Tb 6s -5.864 6p -3.603 5d -4.617 4f -20.900	66 Dy 6s -5.939 6p -3.632 5d -4.566 4f -21.515	67 Ho 6s -6.021 6p -3.668 5d -4.520 4f -22.133	68 Er 6s -6.108 6p -3.703 5d -4.487 4f -22.761	69 Tm 6s -6.184 6p -3.739 5d -4.441 4f -23.305	70 Yb 6s -6.254 6p -3.766 5d -4.378 4f -23.762	71 Lu 6s -5.426 6p -3.369 5d -5.428	
			90 Th 7s -6.307 7p -3.918 6d -9.951 5f -16.685	91 Pa 7s -5.89 7p -3.70 6d -8.09 5f -20.37	92 U 7s -6.194 7p -3.883 6d -9.115 5f -23.373	93 Np 7s -6.266 7p -3.921 6d -9.243 5f -25.256	94 Pu 7s -6.026 7p -3.837 6d -6.324 5f -22.862	95 Am 7s -5.974 7p -3.782 6d -6.103 5f -23.806	96 Cm 7s -5.991 7p -3.692 6d -8.430 5f -27.871	97 Bk 7s -6.198 7p -3.913 6d -6.288 5f -27.528	98 Cf 7s -6.282 7p -3.956 6d -6.315 5f -29.215	99 Es 7s -6.42 7p -4.04 6d -6.44 5f -31.20	100 Fm 7s -6.50 7p -4.08 6d -6.46 5f -32.87	101 Md 7s -6.58 7p -4.13 6d -6.47 5f -34.53	102 No 7s -6.65 7p -4.16 6d -6.46 5f -36.13	103 Lr 7s -8.5 7p -4.9 6d -9.4	

Table 2. Energy of valence s-, p-, d- and f-orbitals of the elements (eV).

EHT valence orbital parameters

27

1 H 1s 1.0000																	2 He 1s 1.6469
3 Li	4 Be]										5 B	6 C	7 N	8 O	9 F	- 10 Ne
2s 0.6534 2p 0.5305	2s 1.0365 2p 0.8994											2s 1.3990 2p 1.2685	2s 1.7210 2p 1.6105	2s 2.0348 2p 1.9398	2s 2.2399 2p 2.0477	2s 2.5644 2p 2.4022 -	2s 2.8812 2p 2.7421
	12 Mg 3s 1.1935											- 13 Al 3s 1.5143	- 14 Si 3s 1.7580	- 15 P 3s 1.9860	- 16 S 3s 2.1362	- 17 Cl 3s 2.3617	- 18 Ar 3s 2.5796
3p 0.6148	3p 0.8809											3p 1.1660	3p 1.4337 -	3p 1.6755 -	3p 1.7721	3p 2.0176	3p 2.2501
19 K 4s 0.9362 4p 0.6914	20 Ca 4s 1.2112 4p 0.9329	21 Sc 4s 1.2870 4p 0.9828 3d 2.4341	22 Ti 4s 1.3416 4p 1.0104 3d 2.6439	23 V 4s 1.3570 4p 0.9947 3d 2.7809	24 Cr 4s 1.3804 4p 0.9784 3d 2.9775	25 Mn 4s 1.4761 4p 1.0641 3d 3.2208	26 Fe 4s 1.5465 4p 1.1114 3d 3.4537	27 Co 4s 1.5650 4p 1.1001 3d 3.6023	28 Ni 4s 1.5532 4p 1.0594 3d 3.7017	29 Cu 4s 1.5791 4p 1.0527 3d 3.8962	30 Zn 4s 1.7778 4p 1.2448	31 Ga 4s 2.0675 4p 1.5073	32 Ge 4s 2.2702 4p 1.7680	33 As 4s 2.4546 4p 1.9819	34 Se 4s 2.5680 4p 2.0548	35 Br 4s 2.7523 4p 2.2652	36 Kr 4s 2.9299 4p 2.4617
37 Rb 5s 1.0963 5p 0.7990	38 Sr 5s 1.3664 5p 1.0415	39 Y 5s 1.4613 5p 1.1100 4d 2.1576	40 Zr 5s 1.5393 5p 1.1647 4d 2.3831	41 Nb 5s 1.5926 5p 1.1738 4d 2.6256	42 Mo 5s 1.6579 5p 1.2186 4d 2.8241	43 Tc 5s 1.693 5p 1.249 4d 2.934	44 Ru 5s 1.7347 5p 1.2514 4d 3.1524	45 Rh 5s 1.7671 5p 1.2623 4d 3.3113	46 Pd 5s 1.6261 5p 1.1221 4d 3.0858	47 Ag 5s 1.8184 5p 1.2719 4d 3.6171	48 Cd 5s 1.9900 5p 1.4596 -	49 In 5s 2.4649 5p 1.6848 -	50 Sn 5s 2.4041 5p 1.9128	51 Sb 5s 2.5492 5p 2.0781	52 Te 5s 2.6576 5p 2.1718	53 I 5s 2.8080 5p 2.3390	54 Xe 5s 2.9595 5p 2.5074
55 Cs 6s 1.1993 6p 0.8918	56 Ba 6s 1.4519 6p 1.1397	57 La 6s 1.5331 6p 1.1979 5d 2.2743 4f 4.4161	72 Hf 6s 1.8411 6p 1.3822 5d 2.7702	73 Ta 6s 1.9554 6p 1.4857 5d 3.0193	74 W 6s 2.0190 6p 1.5296 5d 3.1936	75 Re 6s 2.0447 6p 1.5276 5d 3.3237	76 Os 6s 2.1361 6p 1.6102 5d 3.5241	77 Ir 6s 2.2167 6p 1.6814 5d 3.7077	78 Pt 6s 2.2646 6p 1.6759 5d 3.8996	79 Au 6s 2.3185 6p 1.7126 5d 4.0525	80 Hg 6s 2.4306 6p 1.8672 -	81 Tl 6s 2.5779 6p 1.9899 -	82 Pb 6s 2.7241 6p 2.1837 -	83 Bi 6s 2.7869 6p 2.2146 -	84 Po 6s 2.9312 6p 2.3830 -	85 At 6s 3.116 6p 2.62	86 Rn 6s 3.2053 6p 2.6866
87 Fr 7s 1.4160 7p 1.0598	88 Ra 7s 1.6336 7p 1.3011 -	89 Ac 7s 1.654 7p 1.289 6d 2.374 5f 3.796	104 Rf 7s 1.92 7p 1.45 6d 2.97														
			58 Ce 6s 1.5379 6p 1.1930	59 Pr6s 1.51626p 1.1834	60 Nd 6s 1.5322 6p 1.1923	61 Pm 6s 1.5486 6p 1.2018	62 Sm 6s 1.5653 6p 1.2118	63 Eu 6s 1.5762 6p 1.2152	64 Gd 6s 1.6703 6p 1.2874	65 Tb 6s 1.6186 6p 1.2460	66 Dy 6s 1.6358 6p 1.2570	67 Ho 6s 1.6536 6p 1.2687	68 Er 6s 1.6723 6p 1.2813	69 Tm 6s 1.6898 6p 1.2928	70 Yb 6s 1.7063 6p 1.3030	71 Lu 6s 1.6647 6p 1.2167	
			5d 2.2912 4f 4.9478 90 Th	5d 2.0558 4f 4.8982 91 Pa	5d 2.0718 4f 5.0744 92 U	5d 2.0863 4f 5.2466 93 Np	5d 2.0999 4f 5.4145 94 Pu	5d 2.0980 4f 5.5679 95 Am	5d 2.4862 4f 5.9888 96 Cm	5d 2.1383 4f 5.9040 97 Bk	5d 2.1472 4f 6.0598 98 Cf	5d 2.1566 4f 6.2155 99 Es	5d 2.1668 4f 6.3703 100 Fm	5d 2.1731 4f 6.5208 101 Md	5d 2.1754 4f 6.6686 102 No	5d 2.3795 - 103 Lr	
			7s 1.8381 7p 1.4726 6d 2.6584 5f 4.3613	7s 1.777 7p 1.412 6d 2.571 5f 4.554	7s 1.8246 7p 1.4588 6d 2.6496 5f 4.7702	7s 1.8451 7p 1.4739 6d 2.6940 5f 4.9412	7s 1.7983 7p 1.4366 6d 2.5123 5f 4.9882	7s 1.8011 7p 1.4317 6d 2.5170 5f 5.1301	7s 1.8408 7p 1.4418 6d 2.7349 5f 5.3476	7s 1.8464 7p 1.4697 6d 2.5922 5f 5.4596	7s 1.8647 7p 1.4838 6d 2.6205 5f 5.6140	7s 1.889 7p 1.505 6d 2.659 5f 5.774	7s 1.907 7p 1.519 6d 2.685 5f 5.922	7s 1.924 7p 1.532 6d 2.709 5f 6.069	7s 1.940 7p 1.544 6d 2.730 5f 6.213	7s 2.13 7p 1.72 6d 2.99	

Table 3. Single ζ Slater orbital exponents for valence s-, p-, d- and f-orbitals of the elements.

available. Together with the universal force field (UFF) [22–24] as the geometry generator, the proposed parameter set premises that the vast majority of chemical phenomena may be qualitatively understood by judicious use of the very simple orbital interaction calculations. The software needed for such an approach is now readily available [25]¹. Generation of an approximate geometry and subsequent orbital interaction analysis is also possible using MM+ force field². Good results have also been obtained using SYBYL force field as the geometry generator [26] and then transferring coordinates into YAeHMOP [27]³ through BabelWin [28]. Transferring through Babel is also possible into BICON-CEDIT [29], ICON-EDiT [30], CACAO [31] and CAESAR [32].

4. Choosing a Hückel constant k for an empirically adjusted and consistent valence orbital parameter set

The off-diagonal elements of EH theory, $H_{\mu\nu}$ ($\mu \neq \nu$), represent the effects of bonding between the atoms and are assumed to be proportional to the overlap, $H_{\mu\nu} \sim S_{\mu\nu}$. An approximation for differential overlap, referred to as the Mulliken approximation or generalized Mulliken approximation, can be used to estimate the off-diagonal elements, $H_{\mu\nu}$ [33] (equations (8)–(10))

$$H_{\mu\nu} = \frac{k' S_{\mu\nu} (H_{\mu\mu} + H_{\nu\nu})}{2},$$
(8)

where

$$k' = k + \delta^2 + \delta^4 (1 - k)$$
(9)

and

$$\delta = \frac{H_{\mu\mu} - H_{\nu\nu}}{H_{\mu\mu} + H_{\nu\nu}}.$$
(10)

The Hückel constant, k, has been inserted here as an adjustable parameter. It can be adjusted to give the best agreement with experiment. It is found that a good value is somewhat larger than would be indicated by the Mulliken approximation (k = 1.0). When one wishes to obtain a rough value of k for estimating orbital energies (or better, differences in orbital energies) in organic and organometallic compounds, hydrogen–hydrogen interactions are of great importance. According to Koopmans' theorem, the frontier orbital energies are given by (equation (11)).

$$-\varepsilon_{\text{HOMO}} = I, \tag{11}$$
$$-\varepsilon_{\text{LUMO}} = A.$$

Experimental values of the ionization potential, I, and electron affinity, A, of the H₂ molecule are I = 15.4 eV and A = -2.0 eV [34]. Using the experimental bond length of the H₂ molecule, 0.741 Å, the HOMO–LUMO gap, 17.4 eV, is reproduced with k = 1.3681. Note

¹ Program ArgusLab 3.0.0 is distributed by Planaria Software: (http://www.planaria-software.com). The file EHT.prm, containing the parameters described above for the ArgusLab 3.0.0 program can be obtained from the author on request (e-mail at holo@altis.chem.pg.gda.pl). Since memory for ArgusLab is dynamically allocated, the size of the calculation is limited only by the available system resources and the intrinsic limitations of the theories and algorithms employed. The largest system calculated on the author's PC (~200 MB) was a metallo-protein containing about 600 atoms. If you run calculations on bigger molecules, you will simply need more memory.

² Program HyperChem is distributed by Hypercube, Inc. (http://www.hyper.com). The file Exhuckel.abp, containing the parameters described above for the HyperChem program, can be obtained from the author on request (e-mail at holo@altis.chem.pg.gda.pl). The largest system calculated on the author's PC was the same as for ArgusLab.

³ The eht_params.dat file containing the parameters described above for the YAeHMOP program can be obtained from the author on request (e-mail at holo@altis.chem.pg.gda.pl).

Figure 3. Correlation of EH eigenvalues, ε_n , with PES ionization energies of molecules. The *ab initio* STO-3G geometry and empirically adjusted and consistent parameter set of valence atomic orbitals were used as inputs for EH calculations. Experimental IE values in eV are after [35].

that the proportionality constant k = 1.3681 differs considerably from that introduced by Hoffmann [4] (k = 1.75) and used by many groups. However, in the common approach the hydrogen atom 1s orbital exponent is changed substantially from its original free atom value of $\zeta = 1.0$.

5. An example of an application relevant to the interpretation of photoelectron spectra

As an example of an application, the problem of predicting characteristic peaks in PES is considered. One hundred and six chemical compounds containing elements from hydrogen to uranium of known experimental PES data have been chosen [35]. The structures of compounds have been obtained by ab initio STO-3G energy minimization. Then EHT calculations were performed using the weighted Wolfsberg–Helmholz formula for $H_{\mu\nu}$ [33] and k = 1.3681. The principal use of PE spectroscopy is to determine the binding energies of the atomic and molecular orbitals. Ideally, when PE spectra are taken with a monochromatic photon source, one and only one PE peak will occur corresponding to each of the molecular orbitals since the binding energy is related to the PE energy. The binding energy of a given molecular orbital is the difference between the total energies of the initial and the final states, the initial state being the neutral molecule and the final state being the molecular ion in which an electron from the given orbital has been removed. Rather than using calculations of the total energies of the initial and final states in order to compare with experimental binding energies, the EH model employs eigenvalues calculated for the molecular orbitals of the neutral molecule on the basis of Koopmans' approximation. In the approximation, calculated eigenvalues ε_n are set equal to the binding energies of the frozen molecular orbitals. In this way, the eigenvalues are related

to the adiabatic binding energy by the expression (12)

$$-\varepsilon_n = E_{\operatorname{bin}(n)} + E_{\operatorname{R}},\tag{12}$$

where E_R is the relaxation energy. In comparing experimental binding energies with theoretical calculations, it is most proper to use the onset of the vibrational envelope where v' = 0 since the adiabatic binding energy has a well-defined meaning. However, for spectra of more complex molecules it is often most practical to report the peak of the vibrational envelope, which is called the vertical ionization potential. The results of calculations are shown in figure 3 as the correlation between the $-\varepsilon_n$ and PES ionization energies for 745 occupied orbitals. The mean error value of $-\varepsilon_n$ is -0.38 eV, suggesting that no systematic error exist. The standard deviation of computed orbital energies is 1.58 eV and the maximal error is equal 5.65 eV for the Fe(PF₃)₅ molecule. The 'failures' found could be caused by the applied STO-3G geometry or the proposed parameter set, or they can originate from the EHT approximations [6].

6. Concluding remarks

Obviously the test presented above cannot be treated as an exhaustive one. However, it suggests that the valence orbital single- ζ exponents and orbital energies found perform well at least for the interpretation of PES data. Additional tests not reported in this work show that the proposed empirically adjusted and consisted set of valence orbital parameters is adequate for a qualitative structure–property correlation analysis comparable with the common traditional one popularized by Hoffmann. If one would like to obtain results compatible with the existing huge amount of literature data, then simply change the hydrogen atom orbital exponent to $\zeta = 1.3$ and Hückel constant to k = 1.75.

Acknowledgments

Financial support from the Polish State Committee of Scientific Research (project no 3 T09A 136 16 and project no 4 T09A 028 22) is gratefully acknowledged. In addition, I am very grateful for the possibility of using facilities of the CI TASK Computing Network in Gdańsk.

References

- [1] Albright T A Burdett J K and Whangbo M-H 1985 Orbital Interactions in Chemistry (New York: Wiley)
- [2] Rauk A 1994 Orbital Interaction Theory of Organic Chemistry (New York: Wiley)
- [3] Glaus S, Calzaferri G and Hoffmann R 2002 Chem. Eur. J. 8 1785
- [4] Hoffmann R 1963 J. Chem. Phys. 39 1397
- [5] Macchi P, Proserpio D M and Sironi A 1997 Organometallics 16 2101
- [6] Whangbo M-H 2000 Theor. Chem. Acc. 103 252
- [7] Mann J B 1967 Atomic Structure Calculations I. Hartree–Fock Energy Results for the Elements Hydrogen to Lawrencium (Los Alamos, NM: Los Alamos Scientific Laboratory of the University of California) LA-3690, UC-34 PHYSICS TID-4500
- [8] Mann J B 1967 Atomic Structure Calculations II. Hartree–Fock Wavefunctions and Radial Expectation Values: Hydrogen to Lawrencium (Los Alamos, NM: Los Alamos Scientific Laboratory of the University of California) LA-3691 UC-34 PHYSICS TID-4500
- [9] Slater J C 1930 Phys. Rev. 36 57
- [10] Slater J C 1960 Quantum Theory of Atomic Structure (New York: McGraw-Hill)
- [11] Alvarez S 1985 Table of Parameters for Extended Huckel Calculations (Barcelona)
- [12] Herman A 2001 Substantial improvement of Hartree–Fock–Slater part of any hybrid functional at no computational cost VIIIth Scientific Workshop of Polish Computer Simulation Society (Gdańsk)
- [13] Herman F and Skillman S 1963 Atomic Structure Calculations (Englewood Cliffs, NJ: Prentice-Hall)
- [14] Fitzpatrick N J and Murphy G H 1984 Inorg. Chim. Acta 87 41

- [15] Slater J C and Johnson K H 1972 Phys. Rev. 5 844
- [16] Schwarz K 1972 Phys. Rev. 5 2466
- [17] Schwarz K 1974 Theor. Chim. Acta 34 225
- [18] US Department of Commerce, Technology Administration, National Institute of Standards and Technology http://www.nist.gov
- [19] Heisterberg D J 1995 FDA Version 0.10 Department of Chemistry, The Ohio State University djh@osc.edu or heisterberg.1@osu.edu
- [20] Herman A 1992 The Hartree–Fock–Slater system of programs for qualitative atomic structure calculations on IBM PC and compatible systems *QCPE Bulletin* 12 24 (Herman and Skillman programs [13] converted to IBM PC)
- [21] Calzaferri G and Rytz R 1996 J. Phys. Chem. 100 11122
- [22] Rappě A K, Casewit C J, Colwell K S, Goddard W A III and Skiff W M 1992 J. Am. Chem. Soc. 114 10024
- [23] Casewit C J, Colwell K S and Rappĕ A K 1992 J. Am. Chem. Soc. 114 10035
- [24] Casewit C J, Colwell K S and Rappe A K 1992 J. Am. Chem. Soc. 114 10046
- [25] Thompson M A and Zerner M C 1990 J. Am. Chem. Soc. 112 7828
 Thompson M A and Zerner M C 1991 J. Am. Chem. Soc. 113 8210
- [26] Clark M, Cramer III R D and van Opdensch N 1989 J. Comput. Chem. 10 982
- [27] Landrum G A 1997 Yet another extended Hückel molecular orbital package (YAeHMOP) http://yaehmop.sourceforge.net/
- [28] Gosper J J 1998 A BABEL Windows interface program (-V.1.03 32 bit) BabelWin Brunel University
- [29] Rytz R and Calzaferri G 1997 Oscillator Strength Calculations on Solids (BICON-CEDiT) Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
- [30] Calzaferri G, Rytz R, Brändle M, Brühwiler D and Glaus S 1998 Extended Hückel Molecular Orbitals and Oscillator Strength Calculations (ICON-EDIT) Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
- [31] Mealli C and Proserpio D M 1990 J. Chem. Ed. 67 399
- [32] Ren J, Liang W and Whangbo M H 1998 Crystal and Electronic Structure Analysis using CAESAR PrimeColor Software Raleigh, http://www.primec.com
- [33] Ammeter J H, Bürgi H-B, Thibeault J C and Hoffmann R 1978 J. Am. Chem. Soc. 100 3686
- [34] Pearson R G 1990 Coordination Chem. Rev. 100 403
- [35] Ballard R E 1978 Photoelectron Spectroscopy and Molecular Orbital Theory (Bristol: Adam Hilger)