Introduction

The qualitative analysis, or identification, of the common anions is simpler than the analysis of the cations and usually depends on spot tests of the anions rather than separations followed by Confirmatory tests. Nevertheless, for the purpose of systematic qualitative analysis, anions are classified into 7 groups on the basis of their behaviour against AgNO₃ and BaCl₂ and the solubility in water and 2M HNO₃ of precipitate products of the reactions.

Group I: anions form white precipitate of silver salts which are insoluble in water and 2M HNO₃ solution. Barium salts are soluble in water. Group I consists of Cl⁻ (chloride), Br⁻(bromide), I⁻(iodide), [Fe(CN)₆]⁴⁻ (ferrocyanide), [Fe(CN)₆]³⁻ (ferricyanide) anions.

Group II: anions form white precipitates of Ag salts which are slightly soluble in water and soluble in 2M HNO₃ solution. Barium salts are soluble in water. Group II consists of NO_2^- (nitrite), CH₃COO⁻ (actetate), S²⁻ (sulfide).

Group III: anions form white precipitates with both Ag⁺ and Ba²⁺ ions slightly soluble in water and soluble in 2M HNO₃. Group III consists of SO₃²⁻ (sulfite), CO₃²⁻ (carbonate), $C_2O_4^{2-}$ (oxalate), BO₃³⁻ (borate), $C_4H_4O_6^{2-}$ (tartrate) anions.

Group IV: anions form color precipitates with Ag^+ and Ba^{2+} ions which are slightly soluble in water and soluble in 2M HNO₃ solution. Group IV contain PO_4^{3-} (phosphate), $S_2O_3^{2-}$ (thiosulfate), CrO_4^{2-} (chromate) anions.

Group V: anions do not form any precipitates with Ag^+ and Ba^{2+} ions. This group consists of NO_{3^-} (nitric) and MnO_{4^-} (permanganate) anions.

Group VI: SO₄²⁻ ions form Ag₂SO₄ precipitate soluble in water and white precipitate of BaSO₄ insoluble in water and 2M HNO₃.

Exercise 1:

Introduction

Group I anions form insoluble silver salts. Upon the addition of $AgNO_3$ Cl⁻, Br⁻, I⁻, [Fe(CN)₆]^{4⁻}, [Fe(CN)₆]^{3⁻} ions precipitate as AgCl, AgBr, AgI, Ag₄[Fe(CN)₆] and Ag₃[Fe(CN)₆] insoluble in 2 M HNO₃

Separation and identification of I Group anions Cl⁻, Br⁻, I⁻, [Fe(CN)₆]⁴⁻, [Fe(CN)₆]³⁻

The initial sample may be colorless or yellow. If the sample is yellow it may contain at least one of $[Fe(CN)_6]^{4-}$ and $[Fe(CN)_6]^{3-}$ ions. Therefore, they must be identified as first from the initial sample with the following reactions: $[Fe(CN)_6]^{4-}$

 $\begin{array}{rcl} {\rm K}_4[{\rm Fe}({\rm CN})_6 & + \ {\rm Fe}{\rm Cl}_{3\ excess} \ \rightarrow \ {\rm Fe}_4[{\rm Fe}({\rm CN})_6]_{\downarrow} \ + \ 12\ {\rm KCl} \\ & {\bf Prussian\ blue}\ {\rm - \ a\ dark\ blue\ pigment} \end{array}$

 $K_4[Fe(CN)_6 + FeSO_4 \rightarrow K_2Fe[Fe(CN)_6]_{\downarrow} + K_2SO_4$ reaction 2

light blue color which changes into dark blue

reactions 1-2

[Fe(CN)₆]³⁻

 $K_3[Fe(CN)_6 + FeCl_2 \rightarrow KFe[Fe(CN)_6]_{\downarrow} + 2 KCl$ $KFe[Fe(CN)_6]_{\downarrow} + FeCl_2 \rightarrow FeFe_2[Fe(CN)_6]_{2\downarrow}$ blue precipitate – **Turnbull blue**

reactions 3-4

reaction 5

 K_3 [Fe(CN)₆ + FeCl₃ → Fe^{III}[Fe^{II}(CN)₆] + 3 KCl dark-brown color

After identification of these anions they have to be removed before further identification of the rest of anions of this group. For this purpose the excess of $ZnSO_4$ solution should be used, because $ZnSO_4$ reacts with $[Fe(CN)_6]^{4-}$ and $[Fe(CN)_6]^{4-}$ anions and precipitates as zinc salts of $Zn_2[Fe(CN)_6]$ and $Zn_3[Fe(CN)_6]$:

$ZnSO_4 + K_4Fe(CN)_6 \rightarrow Zn_2[Fe(CN)_6]_{\downarrow} + 2 K_2SO_4$ white precipitate	reaction 6
$ZnSO_4 + K_3Fe(CN)_6 \rightarrow Zn_3[Fe(CN)_6]_{\downarrow} + 3 K_2SO_4 \text{ orange precipitate}$	reaction 7

When precipitates occurred, filtrate the mixture and discard the precipitate A (scheme 1). Filtrate A contains only Cl^- , Br^- and I^- and should be colorless. If the Filtrate A is still yellow, additional portion of $ZnSO_4$ must be added and resulted precipitate filtrated again. Then the rest of anions can be identified from obtained Filtrate A.

Br- and I- ions can be also identified from the initial sample. The identification of these two ions can be followed in one test tube with the use of Cl_2aq and $CHCl_3$. For this purpose take 2 ml of the initial sample, add 2 ml of $CHCl_3$ and some portion of Cl_2aq solution. Next, close test tube with your thumb and shake it vigorously. The presence of I- ions is confirmed, when the organic layer of $CHCl_3$ is tinted violet.

The chlorine water should be added several time with small portions in order to check the presence of Br⁻. When the violet color will disappear from the chloroform layer and yellow-orange color will appear we can state, that Br⁻ ions are present in our initial sample.

$$2NaBr + Cl_2aq \rightarrow 2NaCl + Br_2$$
 reaction 9

The lack of the color allow to state that Br^- ions are not present in the analyzed sample.

NOTE: I⁻ and [Fe(CN)₆]^{3⁻} ions cannot be present together in one solution, because I⁻ ions undergo the oxidation in the presence of [Fe(CN)₆]^{3⁻} ions.</sup></sup></sup>

$$2 \text{ K}_3[\text{Fe}(\text{CN})_6] + 2 \text{ KI} \rightarrow I_2 + 2 \text{ K}_4[\text{Fe}(\text{CN})_6]$$
 reaction 10

Chloride ions Cl^- can be identified from initial sample. As first silver nitrate AgNO₃ and 2 M HNO₃ must be added. All anions from I group will precipitate as silver salts.

$NaCl + AgNO_3 \rightarrow AgCl_{\downarrow} + NaNO_3$	reaction 11
$NaBr + AgNO_3 \rightarrow AgBr_{\downarrow} + NaNO_3$	reaction 12
$NaI + AgNO_3 \rightarrow AgI_{\downarrow} + NaNO_3$	reaction 13

Silver chloride is insoluble in diluted inorganic acids and dissolves in diluted NH₃aq solution (*1 portion of NH*₃aq solution and 3 portions of distilled H₂O):

AgCl + 2 NH₃ \rightarrow Ag(NH₃)₂Cl reaction 14

After adding HNO_3 solution to resulting Filtrate C (scheme 1) white precipitate of AgCl is obtained again:

$$Ag(NH_3)_2Cl + HNO_3 \rightarrow AgCl_{\downarrow} + NH_4NO_3$$
 reaction 15

The rest of analytical reactions of Cl⁻, Br⁻, I⁻, [Fe(CN)₆]^{4⁻}, [Fe(CN)₆]^{3⁻} ions

H₂SO₄ diluted

 $\begin{array}{l} Cl^{-} \mbox{ no reaction} \\ Br^{-} \mbox{ and } l^{-} \mbox{ react in higher temperature} \\ NaBr + \mbox{ } H_2SO_4 \rightarrow HBr \mbox{ + NaHSO_4} \\ NaI + \mbox{ } H_2SO_4 \rightarrow HI \mbox{ + NaHSO_4} \\ 2 \ K_4[Fe(CN)_6] \mbox{ + 3 } H_2SO_4 \rightarrow K_2Fe[Fe(CN)_6]_{\downarrow} \mbox{ + 3 } K_2SO_4 \mbox{ + 6 } HCN \mbox{ at room temperature} \\ \end{array}$

KMnO₄ in acidic solution

Cl⁻ no reaction in cold solution, but Cl⁻ undergo reduction after heating 10 KCl + 2 KMnO₄ + 8 H₂SO₄ \rightarrow 5 Cl₂ + 2 MnSO₄ + 6 K₂SO₄ + 8 H₂O

Cu(II) salts

Cu(II) salts undergo reduction in the presence of $I^{\scriptscriptstyle -}$ ions and form CuI slightly soluble in water

 $2 \text{ CuSO}_4 \ + \ 4 \text{ KI} \ \rightarrow \ 2 \text{ CuI}_{\downarrow} \ + \ I_2 \ + \ 2 \text{ K}_2 \text{SO}_4$

Hydrogen peroxide H₂O₂

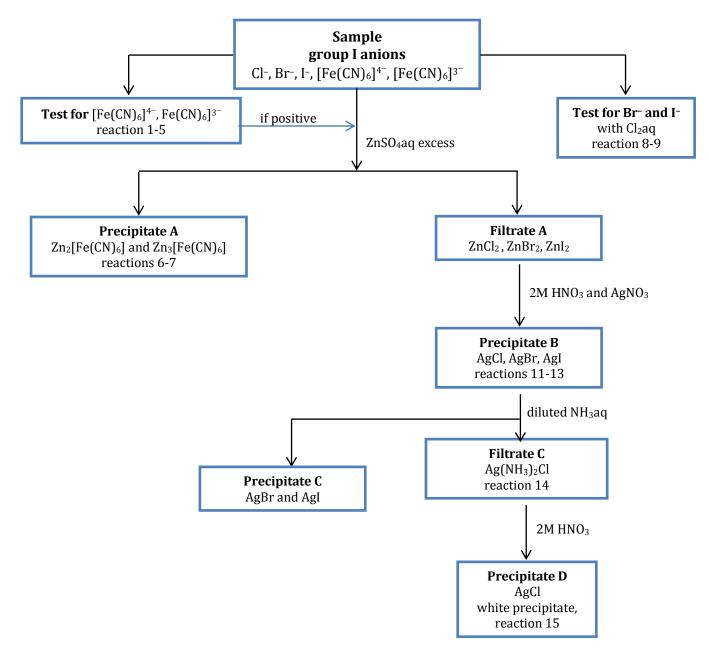
lodide ions undergo oxidation in the presence of $H_2 O_2\;$ in the presence of weak acetic acid

 $2 \text{ KI} + \text{H}_2\text{O}_2 \ + \ 2 \text{ CH}_3\text{COOH} \ \rightarrow \ \text{I}_2 \ + \ 2 \text{ CH}_3\text{COOK} \ + \ 2 \text{ H}_2\text{O}$

Fe(III) salts

 $\begin{array}{l} \mbox{FeCl}_3 \mbox{ evolve gasous } I_2 \mbox{ from } I^- \mbox{ ions solution} \\ 2 \mbox{ FeCl}_3 \ + \ 2 \ KI \ \rightarrow \mbox{ FeCl}_2 \ + \ I_2 \ + \ 2 \ KCl \end{array}$

 $\begin{array}{rl} K_4[Fe(CN)_6 &+ \; FeCl_{3\; excess} \; \rightarrow \; Fe_4[Fe(CN)_6]_{\downarrow} \; + \; 12 \; KCl \\ & \quad \mbox{Prussian blue - a dark blue pigment} \\ K_3[Fe(CN)_6] \; + \; FeCl_3 \; \rightarrow \; Fe^{III}[Fe^{II}(CN)_6] \; + \; 3 \; KCl \end{array}$


Potassium dichromate K₂Cr₂O₇

causes the oxidation of Br⁻ and I⁻ in the presence of sulfuric acid H₂SO₄ $K_2Cr_2O_7 + 6 \text{ KBr} + 7 \text{ H}_2SO_4 \rightarrow 3 \text{ Br}_2 + 4 \text{ K}_2SO_4 + Cr_2(SO_4)_3 + 7 \text{ H}_2O$ $K_2Cr_2O_7 + 6 \text{ K}_4[\text{Fe}(CN)_6] + 7 \text{ H}_2SO_4 \rightarrow 6 \text{ K}_3[\text{Fe}(CN)_6] + Cr_2(SO_4)_3 + 4 \text{ K}_2SO_4 + 7 \text{ H}_2O$

Other reducing agents in reactions with [Fe(CN)₆]³⁻ ions:

 $\begin{array}{l} 2 \ K_3[Fe(CN)_6] + 2 \ KI \rightarrow I_2 + 2 \ K_4[Fe(CN)_6] \\ 2 \ K_3[Fe(CN)_6] + \ K_2S \rightarrow 2 \ K_4[Fe(CN)_6] + S \\ K_3[Fe(CN)_6] + \ Fe(OH)_2 + \ KOH \rightarrow K_4[Fe(CN)_6] + \ Fe(OH)_3 \end{array}$

