The goal of the Exercise 6 is to analyze a solution that may contain a mixture of the following anions: NO_2^- , CH_3COO^- , NO_3^- and MnO_4^- . The first two anions belong to 2^{nd} group, whereas NO_3^- and MnO_4^- are from 5^{th} group anions and they react variously with $AgNO_3$ and $BaCl_2$ groups reagents. But first some analytical reactions of NO_2^- , CH_3COO^- , NO_3^- and MnO_4^- were summarized and the most important among them are given below.

Reactions with AgNO₃

$$AgNO_3 + KNO_2 \rightarrow AgNO_2 \downarrow + KNO_3$$
 (reaction 1)
 $AgNO_3 + CH_3COONa \rightarrow CH_3COOAg \downarrow + NaNO_3$ (reaction 2)

NOTE: Both CH_3COO^- and NO_2^- ions precipitate as silver salt when their concentration is high in analyzed solution. The concentration of all anions in mixtures indicated for Student analysis are standard but not high enough to obtain CH_3COOAg and $AgNO_2$ salts as precipitates.

 NO_3 and MnO_4 anions do not precipitate when AgNO₃ is added to the analyzing solution.

Reactions with BaCl₂

All NO₂-, CH₃COO-, NO₃- and MnO₄- ions do not form precipitates with BaCl₂

Reactions with H₂SO₄

Diluted and concentrated H_2SO_4 causes the degradation of NO_2 - ions into NO_2 (brown vapors) even at low temperature

2 NaNO₂ + H₂SO₄
$$\rightarrow$$
 Na₂SO₄ + 2 HNO₂ (reaction 3)
HNO₂ acid decomposes at: 3 HNO₂ \rightarrow HNO₃ + 2 NO + H₂O (reaction 4)
2 NO + O₂ \rightarrow 2 NO₂ (reaction 5)

H₂SO₄ as a strong acid displaces weak acetic acid from its salt solutions

$$CH_3COONa + H_2SO_4 \rightarrow 2 CH_3COOH + Na_2SO_4$$
 (reaction 6)

Diluted H_2SO_4 does not react visibly with NO_{3}^- and MnO_{4}^- solutions, as opposed to concentrated sulfuric acid:

2 NaNO₃ + H₂SO_{4 concentrated}
$$\rightarrow$$
 Na₂SO₄ + 2 HNO₃ (reaction 7)
2 HNO₃ \rightarrow H₂O + 2 NO₂ \uparrow + ½ O₂ \uparrow

Concentrated sulfuric acid reacts with $KMnO_4$ giving dark green oil of Mn_2O_7 , which can be explosive after initiation by striking the sample or by its exposure to oxidizable organic compounds (the products are MnO_2 and O_2).

$$2 \text{ KMnO}_4 + 2 \text{ H}_2\text{SO}_4 \rightarrow \text{Mn}_2\text{O}_7 + \text{H}_2\text{O} + 2 \text{ KHSO}_4$$
 (reaction 8)

Reactions with Fe(II) salts

 $2 \text{ NaNO}_2 + 2 \text{ FeSO}_4 + 2 \text{ H}_2\text{SO}_4 \text{ diluted} \rightarrow \text{Fe}_2(\text{SO}_4)_3 + 2 \text{ NO} + \text{Na}_2\text{SO}_4 + 2 \text{ H}_2\text{O}$ (reaction 9) Nitrogen oxide forms brown Fe(NO)²⁺ ions with the excess of Fe²⁺ ions visible as brown ring in the

 $[Fe(H_2O)_6]^{2+} + NO \rightarrow [Fe(H_2O)_5(NO)]^{2+} + H_2O$

analyzed solution:

(reaction 10)

Identical reaction occurs for NO₃- ions.

 $2 \text{ NaNO}_3 + 6 \text{ FeSO}_4 + 4 \text{ H}_2 \text{SO}_4 \text{ concentrated} \rightarrow 3 \text{ Fe}_2 (\text{SO}_4)_3 + 2 \text{ NO} + \text{Na}_2 \text{SO}_4 + \text{H}_2 \text{O}$ (reaction 11)

Reactions with Fe(III) salts

 $FeCl_3 + 3 CH_3COONa \rightarrow (CH_3COO)_3Fe + 3 NaCl$ red-brown color of the solution (reaction 12)

Reactions with KI

 NO_2 - ions oxidize I- ions into I₂ in acetic solution and the solution color changes into yellow and brown-red as a result of the conversion into I₂:

 $2 \text{ KI} + 2 \text{ KNO}_2 + 4 \text{ CH}_3\text{COOH} \rightarrow 4 \text{ CH}_3\text{COOK} + I_2 + 2 \text{ NO} + 2 \text{ H}_2\text{O}$

(reaction 13)

The reaction of MnO₄- with I- requires the presence of H₂SO₄ solution:

 $2 \text{ KMnO}_4 + 10 \text{ KI} + 8 \text{ H}_2\text{SO}_4 \rightarrow 2 \text{ MnSO}_4 + 5 \text{ I}_2 + 6 \text{ K}_2\text{SO}_4 + 8 \text{ H}_2\text{O}$

(reaction 14)

Reactions with KMnO₄ and K₂Cr₂O₇

$$5 \text{ HNO}_2 + 2 \text{ KMnO}_4 + 3 \text{ H}_2\text{SO}_4 \rightarrow 5 \text{ HNO}_3 + 2 \text{ MnSO}_4 + \text{K}_2\text{SO}_4 + 3 \text{ H}_2\text{O}$$
 (reaction 15)

$$3 \text{ KNO}_2 + \text{K}_2\text{Cr}_2\text{O}_7 + 4 \text{H}_2\text{SO}_4 \rightarrow 3 \text{ KNO}_3 + \text{Cr}_2(\text{SO}_4)_3 + \text{K}_2\text{SO}_4 + 4 \text{H}_2\text{O}$$
 (reaction 16)

Reactions with other reducing agents:

 NO_2 (reactions 17-24)

 $2 \text{ KNO}_2 + \text{H}_2\text{S} + \text{H}_2\text{SO}_4 \rightarrow 2 \text{ NO} + 2 \text{H}_2\text{O} + \text{S} + \text{K}_2\text{SO}_4$

 $2 \text{ NaNO}_2 + \text{Cu} + 2 \text{ H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + \text{CuSO}_4 + 2 \text{ NO} + 2 \text{ H}_2\text{O}$

 $2 \text{ NaNO}_2 + \text{SO}_2 \rightarrow \text{Na}_2\text{SO}_4 + 2 \text{ NO}$

 $2 \text{ NaNO}_2 + \text{SnCl}_2 + 4 \text{ HCl} \rightarrow \text{SnCl}_4 + 2 \text{ NO} + \text{NaCl} + 2 \text{ H}_2\text{O}$

 $NaNO_2 + NH_4Cl \rightarrow NaCl + N_2 + 2H_2O$

Urea $CO(NH_2)_2 + 2 HNO_2 \rightarrow 2 N_2 + CO_2 + 3 H_2O$

Thiourea $CS(NH_2)_2 + HNO_2 \rightarrow N_2 + HSCN + 2 H_2O$

 $NaN_3 + NaNO_2 + 2 CH_3COOH \rightarrow N_2 + N_2O + 2 CH_3COONa + H_2O$

MnO₄· (reactions 25-33)

a) in acidic solution:

 $2 \text{ KMnO}_4 + 10 \text{ FeSO}_4 + 8 \text{ H}_2\text{SO}_4 \rightarrow 2 \text{ MnSO}_4 + 5 \text{ Fe}_2(\text{SO}_4)_3 + \text{K}_2\text{SO}_4 + 8 \text{ H}_2\text{O}_4$

 $2 \text{ KMnO}_4 + 5 \text{ H}_2\text{S} + 3 \text{ H}_2\text{SO}_4 \rightarrow 2 \text{ MnSO}_4 + 5 \text{ S} + \text{ K}_2\text{SO}_4 + 8 \text{ H}_2\text{O}$

```
2 KMnO<sub>4</sub> + 5 H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> + 3 H<sub>2</sub>SO<sub>4</sub> \rightarrow 2 MnSO<sub>4</sub> + 10 CO<sub>2</sub> + K<sub>2</sub>SO<sub>4</sub> + 8 H<sub>2</sub>O 2 KMnO<sub>4</sub> + 5 H<sub>2</sub>O<sub>2</sub> + 3 H<sub>2</sub>SO<sub>4</sub> \rightarrow 2 MnSO<sub>4</sub> + 5 O<sub>2</sub> + K<sub>2</sub>SO<sub>4</sub> + 8 H<sub>2</sub>O
```

b) in neutral solution:

2 KMnO₄ + 3 H₂O₂
$$\rightarrow$$
 2 MnO₂ + 3 O₂ + 2 KOH + 2 H₂O
2 KMnO₄ + 3 C₂H₅OH \rightarrow 2 MnO₂ + 3 CH₃COOH + 2 KOH + 2 H₂O
2 KMnO₄ + 3 Na₂SO₃ + H₂O \rightarrow 2 MnO₂ + 3 Na₂SO₄ + 2 KOH

c) in basic solution:

$$2 \text{ KMnO}_4 + \text{Na}_2 \text{SO}_3 + 2 \text{ KOH} \rightarrow 2 \text{ K}_2 \text{MnO}_4 + \text{Na}_2 \text{SO}_4 + \text{H}_2 \text{O}$$

After adding some CH_3COOH solution changes its color from dark green into violet again $3 K_2MnO_4 + 4 CH_3COOH \rightarrow 2 KMnO_4 + MnO_2 + 4 CH_3COOK + 2 H_2O$

Reactions with Zn, Al metal or Devarda's alloy: (reactions 34-38)

a) in basic solution: NaNO₂ + 2 Al + NaOH + 5 H₂O \rightarrow NH₃↑ + 2 Na[Al(OH)₄]

 $3 \text{ NaNO}_3 + 8 \text{ Al} + 5 \text{ NaOH} + 18 \text{ H}_2\text{O} \rightarrow 3 \text{ NH}_3 \uparrow + 8 \text{ Na}[\text{Al}(\text{OH})_4]$

b) in acidic solution: $6 \text{ Zn} + 2 \text{ NaNO}_2 + 8 \text{ H}_2 \text{SO}_4 \rightarrow (\text{NH}_4)_2 \text{SO}_4 + 6 \text{ ZnSO}_4 + \text{Na}_2 \text{SO}_4 + 4 \text{ H}_2 \text{O}_4$

 $Zn + NaNO_3 + 2 CH_3COOH \rightarrow NaNO_2 + Zn(CH_3COO)_2 + H_2O$

c) in neutral solution: $5 \text{ H}_2\text{O} + \text{KNO}_2 + 3 \text{ Zn} \rightarrow \text{NH}_3 + \text{KOH} + 3 \text{ Zn}(\text{OH})_2$

Identification of II and V Group anions

USEFUL HINTS:

- 1. If an analyzed sample is colorless it does not contain MnO₄- ions and consequently dark-violet color suggest the presence of MnO₄- ions
- 2. NO_2^- ions cannot be present in a sample together with MnO_4^- ions because NO_2^- undergoes oxidation into NO_3^- ions in acidic solution (see reactions above)
- 3. NO_2 -and NO_3 both form ammonia with hot Al powder in $NaOH_{(aq)}$ solution and gives 'brown ring' test that's why the additional procedures must be taken for proper identification of both anions.
- 4. NO_2 can be identified in a simple test in the absence of MnO_4 ions (below)

First, if the sample contains MnO_4^- ions, they must be removed. For this purpose, take some of the initial sample, add some of H_2O_2 solution into it and wait 2 minutes (*reaction 30*). The resulted brown precipitate of MnO_2 must be filtered and the filtrate must be colorless. If not, add some H_2O_2 solution again and repeat the filtration. The colorless final solution may contain CH_3COO_7 , NO_2^- and NO_3^- .

 CH_3COO^- ions can be identified in the reaction with H_2SO_4 (reaction 6) and characteristic smell of vinegar should be detected.

Next NO_2^- can be determined in two ways. First and the simplest test is discoloration of $KMnO_4$ in acidic solution. In order to do this, take small amount of investigated sample, add some H_2SO_4 solution and then add two drops of $KMnO_4$ solution and observe the solution. The disappearance of the violet color denotes the presence of NO_2^- ions in analyzed solution (*reaction 15*). NO_2^- ions can be also identified with the brown ring test which is described below. It also follows, therefore, that if NO_2^- ions are absent, the brown ring test can be followed for NO_3^- without additional activities.

Analyze the solution for the presence of NO₂- and NO₃- - the brown ring test

As a first NO_2 - are identified according to the procedure:

- 1. Take clean test tube and prepare a concentrated solution of **Mohr's Salt** inorganic compound with the formula $(NH_4)_2Fe(SO_4)_2 \cdot 6H_2O SOLUTION 1$
- 2. Take second clean test tube and pour some of your analyzing sample and add small amount (few drops are enough) of diluted H₂SO₄ **SOLUTION 2**
- 3. Pour gently the Solution 1 into test tube containing Solution 2 and observe whether deep brown ring occurs at the junction of the two liquid layers (see the picture). If so, NO_2 ions are present in analyzed sample.

This deep brown ring is in fact the complex with the formula of $[Fe(H_2O)_5NO]^{2+}$ (reactions 9,10)

The identification of NO_3^- ions requires the removal of the NO_2^- ions from the solution, if they are present. For this purpose, pour some of the initial sample into a beaker and add some of amidosulfonic acid H_3NSO_3 and boil it for 5 minutes. Te reaction runs vigorously due to the emission of gaseous N_2 : $NaNO_2 + H_3NSO_3 \rightarrow NaHSO_4 + N_2 \uparrow + H_2O$. Then take some of the solution and cool in the stream of running water before further investigations (**Solution 3**). Next, take some **Mohr's Salt** into clean test-tube and introduce about 0.5 mL of concentrated H_2SO_4 . Cool the solution in the stream of running water <u>without shaking</u> (**Test tube 1**). Then, pour gently some of the Solution 3 into Test tube 1 by allowing it to flow down the side of the tilted test tube and allow the solution to sit undisturbed. The formation of a brown color at the edges of solid and solution constitutes a positive test for NO_3^- ions.

The end ©