The goal of the Exercise 7 is to analyze a solution that may contain a mixture of the following anions: $SO_{3^{2-}}$, $CO_{3^{2-}}$, $C_{2}O_{4^{2-}}$, $BO_{2^{-}}$ and $C_{4}H_{4}O_{6^{2-}}$. These anions form white precipitates with AgNO₃ which are soluble in diluted HNO₃ acid. BaCl₂ also forms white precipitates hardly soluble in water and soluble in HNO₃. Some of the analytical reactions of $SO_{3^{2-}}$, $C_{2}O_{4^{2-}}$, $BO_{2^{-}}$ and $C_{4}H_{4}O_{6^{2-}}$ ions and methods of their identification in solution are given below.

Analytical reactions of sulfite(IV) ions SO_{3²⁻}

1. AgNO³ gives white precipitate of silver sulfite:

 $Na_2SO_3 + 2 AgNO_3 = Ag_2SO_3 \downarrow + 2 NaNO_3$

which dissolves in mineral acids, acetic acid and ammonia. $Ag_2SO_3 + 2 HNO_3 = 2 AgNO_3 + SO_2 + H_2O$ $Ag_2SO_3 + 4 NH_3 \cdot H_2O = 2[Ag(NH_3)_2]SO_3 + 4 H_2O$

2. BaCl₂ precipitates white residue of barium sulfite:

 $Na_2SO_3 + BaCl_2 = BaSO_3 \downarrow + 2 NaCl$

 $\textbf{3.}~\textbf{H}_2\textbf{SO}_4$ diluted causes the degradation of $\text{SO}_3{}^{2\text{-}}$ according to the reaction:

 $Na_2SO_3 + H_2SO_4 = Na_2SO_4 + SO_2 + H_2O$

The reaction runs more vigorously when H_2SO_4 is concentrated.

4. KMnO₄

a) in acidic solution:

2 KMnO₄ + 5 Na₂SO₃ + 3 H₂SO₄ = 2 MnSO₄ + K₂SO₄ + 5 Na₂SO₄ + 3 H₂O discolouration b) in basic solution:

 $2 \text{ KMnO}_4 + \text{Na}_2\text{SO}_3 + 2 \text{ KOH} = 2 \text{ K}_2\text{MnO}_4 + \text{Na}_2\text{SO}_4 + \text{H}_2\text{O}$ dark green colour c) in neutral solution:

2 KMnO₄ + 3 Na₂SO₃ + H₂O = 2 MnO₂ \downarrow + 3 Na₂SO₄ + 2 KOH brown precipitate

5. Other reactions with oxidizing agents:

 $\begin{aligned} &Cr_2O_7{}^{2-}+3\ SO_3{}^{2-}+8\ H^+=2\ Cr^{3+}+3\ SO_4{}^{2-}+4\ H_2O\\ &Na_2SO_3+I_2+H_2O=Na_2SO_4+2\ HI\\ &Na_2SO_3+Cl_2+H_2O=Na_2SO_4+2\ HCl\\ &Na_2SO_3+H_2O_2=Na_2SO_4+H_2O\end{aligned}$

Analytical reactions of carbonate ions CO32-

1. AgNO³ gives white precipitate of silver carbonate which dissolves easily in diluted HNO₃, CH₃COOH and NH₃:

 $2 \text{ AgNO}_3 + \text{Na}_2\text{CO}_3 = \text{Ag}_2\text{CO}_3 \downarrow + 2 \text{ NaNO}_3$

2. BaCl₂ precipitates as white residue of $BaCO_3$ which dissolves in mineral acids beside H_2SO_4 BaCl₂ + Na₂CO₃ = BaCO₃ + 2 NaCl **3.** H₂SO₄(VI) diluted and other acids (even CH₃COOH) decompose carbonate salts, releasing carbon dioxide gas, visible as gas bubbles:

 $Na_2CO_3 + H_2SO_4 = Na_2SO_4 + CO_2\uparrow + H_2O$

Analytical reactions of oxalate ions C₂O₄²⁻

1. AgNO³ precipitates as white precipitate of calcium oxalate:

 $K_2C_2O_4 + 2 \text{ AgNO}_3 = Ag_2C_2O_4 \downarrow + 2 \text{ KNO}_3$ soluble in diluted HNO₃ and ammonia

2. BaCl₂ also precipitates as white residue of barium oxalate: Ba²⁺ + C₂O_{4²⁻} = BaC₂O₄ \downarrow

soluble in diluted HNO₃ and boiling acetic acid

3. CaCl₂ gives white precipitate of calcium oxalate CaC_2O_4 almost insoluble in water and acetic acid, but it dissolves in mineral acids

 $CaCl_2(aq) + (NH_4)_2C_2O_4(aq) = CaC_2O_4(s) + 2 NH_4Cl(aq)$

- **4.** MnO_2 in the presence of hot and diluted H_2SO_4 acid: $MnO_2 + H_2SO_4 + H_2C_2O_4 = MnSO_4 + 2 CO_2 + 2 H_2O_4$
- 6. KMnO₄ (and dichromate $Cr_2O_7^{2-}$) oxidizes acidic solution of oxalates into carbon dioxide: 2 KMnO₄ + 5 H₂C₂O₄ + 3 H₂SO₄ = 2 MnSO₄ + 10 CO₂ + K₂SO₄ + 8 H₂O K₂Cr₂O₇ + 3 H₂C₂O₄ + 4 H₂SO₄ = Cr₂(SO₄)₃ + K₂SO₄ + 6 CO₂ + 7 H₂O

Analytical reactions of tartrate ions C₄H₄O₆²⁻

- **1. AgNO**₃ precipitates as white silver tartrate which is soluble in diluted HNO₃ and ammonia: Na₂C₄H₄O₆ + 2 AgNO₃ = Ag₂C₄H₄O₆ \downarrow + 2 NaNO₃
- **2. BaCl**₂ also precipitates as white barium tartrate:

$$BaCl_2 + Na_2C_4H_4O_6 = BaC_4H_4O_6 \downarrow + 2 NaCl$$

This precipitate dissolves in diluted HNO₃ acid, hardly in acetic acid

3. CaCl₂ gives white precipitate of calcium tartrate $CaC_4H_4O_6$ but only when the tartrate anions are in excess in analysed solution. $CaC_4H_4O_6$ dissolves in acetic acid, in contrast to calcium oxalate CaC_2O_4 which does not dissolve in acetic acid.

4. H_2SO_4 diluted does not cause any changes, but concentrated H_2SO_4 char tartrate anions and CO, CO₂, SO₂ and other products of degradation are formed. As a result, the colour of analysed solution turns into dark brown and the smell of burnt sugar occurs.

5. KMnO₄ slowly reduces tartrate anions in the presence of sulphuric acid. The reaction runs faster when the solution is warmed.

Analytical reactions of borate ions BO₂-

1. AgNO₃ precipitates as white silver borate which is soluble in diluted HNO₃ NaBO₂ + AgNO₃ = AgBO₂ \downarrow + NaNO₃

2. $BaCl_2$ also precipitates as white barium borate which dissolves in mineral acid and acetic acid, as well as in the excess of $BaCl_2$

 $2 \text{ NaBO}_2 + \text{ BaCl}_2 = \text{Ba}(\text{BO}_2)_2 \downarrow + 2 \text{ NaCl}$

 $3.\,H_2SO_4\,diluted$ and concentrated does not cause any changes.

4. Methyl alcohol CH₃OH forms ester of trimethyl borate:

```
3 \text{ CH}_3\text{OH} + \text{H}_3\text{BO}_3 = \text{B}(\text{OCH}_3)_3 + 3 \text{ H}_2\text{O}
```

It is a colourless liquid that burns with a green flame

Identification of III Group anions in analyzed mixture

As a first step check the pH of analyzed solution with indicator paper. Basic pH may suggest the presence of CO_3^{2-} ions in the solution. Their presence can be confirmed with a very simple test:

Test for CO₃²⁻ ions:

Add a few drops of diluted H_2SO_4 (or HCl) solution to the analyzed solution and observe whether gas bubbles start to form in the test tube:

 $Na_2CO_3 + H_2SO_4 = Na_2SO_4 + CO_2\uparrow + H_2O$

Test for SO₃²⁻ ions:

The presence of SO_3^{2-} ions can be verified in the reaction with $KMnO_4$ in acidic solution, because SO_3^{2-} oxidize permanganate anions into Mn^{2+} and the violet colour disappears simultaneously.

Test: take small amount of analyzed solution, add some of diluted H_2SO_4 and add one drop of KMnO₄. The immediate discoloration of KMnO₄ drop proves that SO_3^{2-} anions are present in the solution. If the color does not changes it means that SO_3^{2-} ions are absent in analyzed solution.

NOTE!

 $C_2O_{4^{2\text{-}}}$ and $C_4H_4O_6{^{2\text{-}}}$ ions also oxidize $KMnO_4$ but these reactions are significantly slower.

Test for C₂O₄²⁻ ions:

 $C_2O_4^{2-}$ ions form white precipitate in reaction with $CaCl_2$ and obtained CaC_2O_4 does not dissolve in acetic acid. To run the test, take fresh part of analysed solution and acidify it with ca 5 ml of diluted acetic acid. Then add 1 ml of calcium chloride solution and shake the test tube. If white precipitate remains in the test tube it means, that oxalate anions are present in the sample.

Test for $C_4H_4O_6^{2-}$ and BO_2^{-} ions in one evaporating dish:

NOTE! This test must be performed in the fume hood.

As a first BO_2^- ions are verified. For this purpose take a porcelain dish, pour about 3 ml of the mixture and add some drops of conc. sulphuric acid followed by 1 ml of methyl alcohol. Heat the dish and set it alight with matches. The BO_2^- ions are confirmed when green flame is observed. Continue the heating of the porcelain until the solution will evaporate. If tartrate anions are present, the obtained residue will turn into dark-brown mixture and the smell of burnt sugar will be noticeable.

The end 🕲