The goal of the Exercise 8 is to analyze a solution that may contain the following anions: PO_4^{3-} , $S_2O_3^{2-}$, CrO_4^{2-} and SO_4^{2-} . These anions form white or colored precipitates with AgNO₃ and white precipitates with BaCl₂. For the analytical reactions Na₂HPO₄ salt is used as a source of PO₄³⁻ anions.

Analytical reactions of phosphate(V) ions PO₄³⁻

1. AgNO³ gives yellow precipitate of silver phosphate:

 $Na_2HPO_4 + 3 AgNO_3 = Ag_3PO_4 \downarrow + 2 NaNO_3 + HNO_3$ which dissolves in mineral acids, acetic acid and ammonia.

2. BaCl₂ precipitates white residue of barium hydrogen phosphate which dissolves in acetic acid, ammonia, HNO₃ and HCl:

 $Na_2HPO_4 + BaCl_2 = BaHPO_4 \downarrow + 2 NaCl$

3. Magnesia mixture

This mixture is composed of magnesium chloride, ammonium chloride and ammonia and allow to identify the HPO₄²⁻ ions even in very diluted solutions as a white precipitate of MgNH₄PO₄ salt : HPO₄²⁻ + NH₃·H₂O + MgCl₂ + 5 H₂O = MgNH₄PO₄·6H₂O↓ + 2 Cl⁻

Analytical reactions of chromate ions CrO₄²⁻

1. AgNO³ gives red-brownish precipitate of silver chromate which dissolves easily in diluted HNO₃, and ammonia:

 $2 \text{ AgNO}_3 + \text{Na}_2\text{CrO}_4 = \text{Ag}_2\text{CrO}_4 \downarrow + 2 \text{ NaNO}_3$

2. BaCl₂ precipitates yellow residue of $BaCrO_4$ which dissolves in mineral acids beside H_2SO_4 . It also does not dissolve in CH_3COOH

 $BaCl_2 + Na_2CrO_4 = BaCrO_4 \downarrow + 2 NaCl$

3. H₂SO₄ acid converts chromates into dichromates and the color of the solution changes from yellow to orange:

$$2 Na_2 CrO_4 + H_2 SO_4 = Na_2 SO_4 + Na_2 Cr_4 O_7 + H_2 O_4$$

4. Pb(CH₃COO)₂ precipitates chromate and dichromate ions as yellow precipitate of lead(II) chromate according to the reaction:

$$Pb(CH_3COO)_2 + K_2CrO_4 = PbCrO_4 \downarrow + 2 CH_3COOK$$

5. Reducing agents: like Zn_{metal}, H₂S, Br⁻, Fe²⁺ are oxidized by dichromates in acidic solution:

 $\begin{array}{l} K_2 Cr_2 O_7 \ + \ 3 \ Zn \ + \ 7 \ H_2 SO_4 \ = \ Cr_2 (SO_4)_3 \ + \ 3 \ Zn SO_4 \ + \ K_2 SO_4 \ + \ 7 \ H_2 O \\ K_2 Cr_2 O_7 \ + \ 3 \ H_2 S \ + \ 4 \ H_2 SO_4 \ = \ Cr_2 (SO_4)_3 \ + \ 3 \ S \ + \ K_2 SO_4 \ + \ 7 \ H_2 O \\ K_2 Cr_2 O_7 \ + \ 6 \ FeSO_4 \ + \ 7 \ H_2 SO_4 \ = \ Cr_2 (SO_4)_3 \ + \ 3 \ Fe_2 (SO_4)_3 \ + \ K_2 SO_4 \ + \ 7 \ H_2 O \\ K_2 Cr_2 O_7 \ + \ 6 \ KBr \ + \ 7 \ H_2 SO_4 \ = \ Cr_2 (SO_4)_3 \ + \ 3 \ Fe_2 (SO_4)_3 \ + \ K_2 SO_4 \ + \ 7 \ H_2 O \\ K_2 Cr_2 O_7 \ + \ 6 \ KBr \ + \ 7 \ H_2 SO_4 \ = \ Cr_2 (SO_4)_3 \ + \ 3 \ Br_2 \ + \ 4 \ K_2 SO_4 \ + \ 7 \ H_2 O \\ K_2 Cr_2 O_7 \ + \ 3 \ H_2 C_2 O_4 \ + \ 4 \ H_2 SO_4 \ = \ Cr_2 (SO_4)_3 \ + \ 6 \ CO_2 \ + \ K_2 SO_4 \ + \ 7 \ H_2 O \\ K_2 Cr_2 O_7 \ + \ CH_3 CH_2 OH \ + \ 8 \ HNO_3 \ = \ 2 \ Cr(NO_3)_3 \ + \ 3 \ CH_3 CHO \ + \ 2 \ KNO_3 \ + \ 7 \ H_2 O \\ \end{array}$

 $K_2Cr_2O_7 + 14 HCl = 2 KCl + 2 CrCl_3 + 3 Cl_2 + 7 H_2O$

In neutral pH of the solution:

 $K_2Cr_2O_7 + 3H_2S + H_2O = 2Cr(OH)_3\downarrow + 3S\downarrow + 2KOH$

Analytical reactions of thiosulphate ions S₂O_{3²⁻}

1. $AgNO_3$ added in excess precipitates white residue of silver thiosulphate. $Ag_2S_2O_3$ is not stable in water solution and its color changes in time. $Ag_2S_2O_3$ disproportionates to give silver sulphide (black precipitate) and sulphuric acid. That is, a white precipitate is obtained which changes to brown and finally to black color.

 $Na_2S_2O_3 + 2 AgNO_3 + Ag_2S_2O_3 \downarrow + 2 NaNO_3$ $Ag_2S_2O_3 + H_2O = Ag_2S \downarrow + H_2SO_4$

2. BaCl₂ also precipitates as white residue of barium thiosulphate:

 $Ba^{2+} + S_2O_3{}^{2-} = BaS_2O_3{\downarrow}$ soluble in hot water and diluted HCl and HNO_3

3. I₂ is reduced into iodides, whereas thiosulphates are oxidized into tetrathionates (reaction used in iodometry):

 $2 \text{ Na}_2 \text{S}_2 \text{O}_3 + \text{I}_2 = 2 \text{ NaI} + \text{Na}_2 \text{S}_4 \text{O}_6$

- **4. Fe(III) salts** form soluble salts of Fe(II) 2 FeCl₃ + 2 Na₂S₂O₃ = 2 FeCl₂ + Na₂S₄O₆ + 2 NaCl
- **5.** Cl_{2aq} and Br_{2aq} are reduced into chlorides and bromides: Na₂S₂O₃ + 4 Cl₂ + 5 H₂O = Na₂SO₄ + H₂SO₄ + 8 HCl
- 6. KMnO₄ (and dichromates $Cr_2O_7^{2-}$) oxidizes thiosulphates into sulphates: 8 KMnO₄ + 5 Na₂S₂O₃ + 7 H₂SO₄ = 8 MnSO₄ + 5 Na₂SO₄ + 4 K₂SO₄ + 7 H₂O 4 K₂Cr₂O₇ + 3 Na₂S₂O₃ + 13 H₂SO₄ = 4 Cr₂(SO₄)₃ + 4 K₂SO₄ + 3 Na₂SO₄ + 13 H₂O
- **7. H atomic (Zn + HCl)** reduces thiosulphates into hydrogen sulfide in acidic solution: Na₂S₂O₃ + 4 Zn + 10 HCl = 2 H₂S + 4 ZnCl₂ + 2 NaCl + 3 H₂O

Analytical reactions of sulphate ions SO42-

- **1. AgNO**₃ does not precipitate any residues. Ag₂SO₄ precipitate can be obtained only from very concentrated solutions.
- **2. BaCl**₂ precipitates as white barium sulphate:

 $BaCl_2 + Na_2SO_4 = BaSO_4 \downarrow + 2 NaCl$

This precipitate dissolves only in concentrated H_2SO_4 BaSO₄ + H_2SO_4 = Ba(HSO₄)₂

Identification of Groups IV and VI anions in analyzed mixture

Test for CrO₄²⁻ ions:

Water solutions of chromate salts are yellow in general. Therefore, the presence of $CrO_{4^{2-}}$ ions is quite easy to establish.

NOTE!

 $S_2O_3^{2-}$ and CrO_4^{2-} ions cannot exist together in one mixture because in acidic solution these anions react with each other according to the following redox reaction:

 $3 S_2 O_3^{2-} + 8 Cr O_4^{2-} + 34 H_3 O_7^{+} = 6 SO_4^{2-} + 8 Cr^{2+} + 51 H_2 O_3^{-}$

Test for PO₄³⁻ ions:

Prepare a clean test tube and add 2mL of analyzing solution to it. Next, add about 1mL of magnesia mixture (mixture composed of magnesium chloride, ammonium chloride and ammonia). This mixture is ready to use in bottle titled in Polish "MIESZANINA MAGNEZOWA"

 $HPO_{4^{2-}} + NH_{3} \cdot H_{2}O + MgCl_{2} + 5 H_{2}O = MgNH_{4}PO_{4} \cdot 6H_{2}O \downarrow + 2 Cl^{-}$

The white precipitate of MgNH₄PO₄·6H₂O unequivocally prove the presence of PO₄³⁻ ions in analyzed solution.

Test for S₂O₃²⁻ ions:

The absence of CrO_4^{2-} ions in analyzed solution allow to verify the presence of $S_2O_3^{2-}$ with simple test. Take 2 mL of analyzing solution and add small amount of diluted H_2SO_4 acid. Then, add small amount of KMnO₄ solution and observe the solution in the test tube. The disappearance of violet color of KMnO₄ solution proves the presence of $S_2O_3^{2-}$ anions.

 $8 \text{ KMnO}_4 + 5 \text{ Na}_2\text{S}_2\text{O}_3 + 7 \text{ H}_2\text{SO}_4 = 4 \text{ K}_2\text{SO}_4 + 8 \text{ MnSO}_4 + 5 \text{ Na}_2\text{SO}_4 + 7 \text{ H}_2\text{O}_4$

Test for SO₄²⁻ ions:

NOTE!

First we must remove $S_2O_3^{2-}$ anions if they are present in analyzed sample. For this, take a clean test tube and add 2mL of analyzed mixture to it. Next, add 1mL of 6 M hydrochloric acid to the tube and shake gently to mix the contents. Thiosulfate ions decompose into solid sulfur and gaseous SO_2 according the reaction:

$$Na_2S_2O_3 + 2 HCl = S \downarrow + SO_2 \uparrow + 2 NaCl + H_2O$$

The white precipitate of sulfur must be filtered out until the filtrate is limpid. Then, add about 1 mL of barium chloride solution to the tube, shake it gently and observe. The precipitation of white $BaSO_4$ proves the presence of SO_4^{2-} ions in analyzed mixture.

 $BaCl_2 + Na_2SO_4 = BaSO_4 \downarrow + 2 NaCl$

The end 😳